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The variation of S, the velocity derivative skewness, with the Taylor microscale Reynolds
number Rλ is examined for different turbulent flows by considering the locally isotropic
form of the transport equation for the mean energy dissipation rate ǫiso. In each flow, the
equation can be expressed in the form S+2G/Rλ = C/Rλ, where G is a non-dimensional
rate of destruction of ǫiso and C is a flow dependent constant. Since 2G/Rλ is found to
be very nearly constant for Rλ > 70, S should approach a universal constant when Rλ is
sufficiently large, but the way this constant is approached is flow dependent. For example,
the approach is slow in grid turbulence and rapid along the axis of a round jet. For all
the flows considered, the approach is reasonably well supported by experimental and
numerical data. The constancy of S at large Rλ has obvious ramifications for small scale
turbulence research since it violates the modified similarity hypothesis introduced by
Kolmogorov (1962) but is consistent with the original similarity hypothesis (Kolmogorov
1941a).

1. Introduction

The skewness S of the longitudinal velocity derivative, usually defined as

S =
(∂u/∂x)

3

(∂u/∂x)2
3/2

(1.1)

(u is the longitudinal velocity fluctuation, x is in the flow direction; the overbar denotes
time averaging for experimental data and space/time averaging for numerical data), is an
important quantity in turbulent research since it is closely linked to the production of the
mean enstrophy or mean energy dissipation rate due to vortex stretching. In particular,
the variation of S with the Taylor microscale Reynolds number Rλ(=u′λ/ν, where λ
is the longitudinal Taylor microscale u′/(∂u/∂x)′ and ν is the kinematic viscosity of
the fluid, a prime denotes a r.m.s value) has received a great deal of attention following
Kolmogorov’s (Kolmogorov 1962) third hypothesis. The majority of the observations and
predictions have tended to indicate a slow, though continuous increase of |S| with Rλ,
viz.

|S| ∼ Rα
λ (α > 0) (1.2)

when atmospheric surface layer data are included, e.g. Wyngaard & Tennekes (1970);
Gibson et al. (1970); Champagne et al. (1977); Van Atta & Antonia (1980); Sreenivasan & Antonia
(1997). However, when the latter data are disregarded (a major reason for doing so is
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that these data were obtained at a relatively small height above the ground or ocean
surface), the bulk of the laboratory data (e.g. Fig. 5 of Sreenivasan & Antonia (1997))
does not exclude the possibility that -S becomes constant when Rλ approaches 103. Since
the laboratory data have been collected from a wide range of different flows, |S| may be
flow dependent, a possibility that has not been formally acknowledged in the past. How
and whether S becomes constant at sufficiently large Rλ should be of special interest to
both the engineering and physics turbulence communities. S plays an important role in
turbulence modelling, and in particular in the k − ǫ model where it is involved in the
transport equation of ǫ, the mean turbulent energy dissipation rate. One consequence of
Kolmogorov (1962) (hereafter K62) is that |S| continues to increase with Rλ whereas
the earlier phenomenology of Kolmogorov (1941a), widely known as K41, predicts that
all normalized velocity derivative moments should remain constant with Rλ, provided
the latter is sufficiently large. Note that the constancy of S at sufficiently large Rλ was
underlined by Batchelor (1953).
It should be recognized from the outset that the finite Reynolds number effect (e.g.

Qian 1999; Danaila et al. 1999; Lindborg 1999) cannot be ignored when Rλ 6 103. As an
example, the non-stationarity in the Karman-Howarth (K-H) equation (Karman & Howarth
1938), neglected by Kolmogorov (1941b) and Frisch (1995), needs to be retained to ac-
count for this effect. Indeed, Antonia & Burattini (2006) showed that Kolmogorov’s 4/5
law is approached more rapidly for forced than decaying turbulence and that the nature
of the forcing also matters. The retention of the non-stationarity in the K-H equation,
strictly valid for homogeneous and isotropic turbulence, essentially accounts for the inho-
mogeneity of the large scales and hence the physical processes associated with the initial
injection of energy into the flow and its subsequent distribution among the different scales.
This virtually ensures that the small scale motion (SSM) will exhibit non-universal fea-
tures at finite Reynolds numbers, i.e. a dependence on initial and boundary conditions
and on the individual nature of the flows. Whereas Antonia & Burattini (2006) focused
on inertial range scales, we concentrate here on the limiting behaviour as the scale goes to
zero, of the generalized form of the K-H equation, or equivalently the transport equation

for (δq)2 (=(δu)2 +(δv)2 + (δw)2), the velocity increment δα = α(x+ r)−α(x) between
two points separated by a distance r along x, the flow direction; α stands for either u,
v, or w, v and w being velocity fluctuations in the y and z directions respectively. The
transport equation for ǫ represents an important constraint on how S varies in different
flows. Although local isotropy is assumed, we will show that differences in large scale
inhomogeneities between different flows result in a non-universal approach of -S towards
a constant value as Rλ increases. The different flows we consider are stationary forced
periodic box turbulence (or SFPBT), decaying grid turbulence, and the flow along the
axis in the self-preserving region of a circular jet. In each case, local isotropy is expected
to be reasonably satisfied.

2. Theoretical considerations

An appropriate starting point for our analysis is the transport equation for (δq)
2
in

flows or flow regions where departures from local isotropy are small, viz.

−δu(δq)
2
+ 2ν

∂

∂r
(δq)

2
+ Iq =

4

3
ǫr. (2.1)

The first and second terms on the left side of (2.1) represent the energy transfer and
viscous diffusion of energy, respectively. The third term accounts for the inhomogeneity
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or non-stationarity associated with the large scales. ǫ is defined by

ǫ = ν

(

∂ui

∂xj
+

∂uj

∂xi

)

∂uj

∂xi
(i, j = 1, 2, 3) (2.2)

where ui are the velocity fluctuations in the xi directions and the double indices conven-
tion applies. In the framework of Kolmogorov (1941a), Iq is set to zero, thus ensuring
universality. Clearly, any departure from universality will arise from the term Iq which
must be retained if turbulence is to be described accurately at all scales. At large r,
(2.1) reduces to the one-point energy budget equation whereas in the limit r→0, (and
after some manipulations detailed in Antonia et al. (2000)), it reduces to the one-point
transport equation of ǫ.
For decaying grid turbulence, Iq reflects the streamwise decay of turbulent energy, viz.

Iq(r) = −U

r2

∫ r

0

s2
∂(δq(s))

2

∂x
ds, (2.3)

where the mean velocity U is constant. When r→0, and assuming isotropy, the transport
equation for ǫ simplifies to the equation first considered in detail by Batchelor & Townsend
(1947)

−U
∂ǫiso
∂x

=
7

3
√
15

ǫiso
3/2

ν1/2

[

S + 2
G

Rλ

]

, (2.4)

where

G = u2
(∂2u/∂x2)2

(∂u/∂x)2
2 (2.5)

can be thought of as a destruction coefficient of ǫiso, the isotropic mean energy dissipation
rate. Equation (2.4) can be recast in the form (see for example Thiesset et al. (2014))

S + 2
G

Rλ
=

C

Rλ
, (2.6)

where

C =
90

7(1 + 2R)

n+ 1

n
(2.7)

(n is the power-law decay exponent of the longitudinal velocity variance, viz. u2∼x−n,
and R = v2/u2) is constant if n is constant.
As noted in the introduction, the possible flow dependence of C is of importance

both in terms of turbulence modelling and also when testing for the so-called small-scale
or internal intermittency effects, first introduced by K62. In the former case and the
specific context of the k− ǫ model, the value of C determines the constant in the model.
It is now well accepted that the concept of a universal constant is not tenable (see for
example George et al. (2001)). In the latter case, it seems likely-as will be seen later in
this section-that for the same (finite) value of Rλ, the value C may differ in different
flows. This in turn implies that the value of S may differ, for nominally the same value
of Rλ, in different flows, thus leading to an ambiguity when testing for the effect of
intermittency on different small-scale statistics.
With respect to (2.7), it is evident that a large family of curves can be plotted for

S + 2G/Rλ as a function of Rλ in grid turbulence given the scatter in the magnitude of
n that exists in the literature (e.g. George 1992). A power-law decay is tenable strictly
when Rλ is constant which corresponds to self-preservation at all scales (n = 1, e.g.
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Meldi & Sagaut (2013) and Djenidi & Antonia (2015)). For most experiments, the power-
law decay is only approximate and Rλ continues to decrease with x during the decay.
It is worth recalling here Speziale and Bernard’s argument (Speziale & Bernard 1992)
that n = 1 is ”the asymptotic state toward which a self-preserving isotropic turbulence
is driven at high Reynolds numbers in order to resolve the fundamental imbalance be-
tween vortex stretching and viscous diffusion. In the process of resolving this imbalance,
compatibility with Kolmogorov scaling is achieved for the small-scale correlations.”
On the other hand, there are flow regions e.g. along the axis in the far field of an

axisymmetric jet and the far plane wake where self-preservation is satisfied. Provided the
initial Reynolds number (based on the jet diameter D and jet velocity Uj or the cylinder
diameter d and free stream velocity U∞) is sufficiently large, there will be a range of
x/D or x/d over which Rλ is constant, thus removing any ambiguity when plotting
S + 2G/Rλ versus Rλ. Since self-preservation is valid, S and 2G/Rλ do not vary with
x. The consequence of self-preservation on various turbulence statistics in these two flow
regions have been explored in some detail (Thiesset et al. (2014) for axis of axisymmetric
jet and Tang et al. (2015a) far plane wake). Here we only briefly recall the main steps
obtained in Thiesset et al. (2014) which lead to the expression for S + 2G/Rλ.
Along the axis of a round jet, the inhomogeneous term in (2.1) is

Iq(r) = − U
r2

∫ r

0 s2 ∂(δq(s))2

∂x ds

− 2
r2

dU
dx

∫ r

0 s2[(δu(s))
2 − (δv(s))

2
]ds.

(2.8)

At large r, (2.1) reduces to the one-point energy budget, viz.

−U

2

dq2

dx
− (u2 − v2)

dU

dx
= ǫ, (2.9)

since the 1st and 2nd terms of the left side of (2.1) become zero when r is large. In contrast
to grid turbulence, the mean velocity U (∼x−1) decays with x. Equation (2.9) reflects
the balance between ǫ and the sum of the advection and production of the turbulent
energy, the latter arising through the interaction between the normal Reynolds stresses
and the mean strain rate ∂U/∂x. The jet axis region satisfies self-preservation exactly
for x/D & 50, since Rλ does not vary with x in this region (Burattini et al. 2005). The
limiting form of (2.1) as r→0 can be simplified using axisymmetry (w2 = v2) and local
isotropy (Thiesset et al. 2014)). The final expression is identical to (2.6), except that C
is now given by

C =
90

7(2 +R)
. (2.10)

Since all the flows mentioned above are of the ”decaying” type, it seems appropriate
to consider ”forced” turbulence flows which are in general less affected by finite Reynolds
number or FRN effects (e.g. Antonia & Burattini 2006) than decaying flows. We start
by writing Eq. (2.6) in a generalized form

S + 2
G

Rλ
= D, (2.11)

where D is exactly given by

D =
limr→0

LS(r)
r2

(

∂u
∂x

)2
3/2

, (2.12)

where the term LS(r) reflects the large-scale effects. Its particular form in isotropic
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decaying turbulence is

LSdecay(r) = U
∂(δq)

2

∂x
, (2.13)

or, in forced turbulence,

LSforced(r) = δuiδuj
∂Ui

∂xj
. (2.14)

Term D may further be written in the form

D =
limr→0

LS(r)
r2

limr→0
1
r3 (δu)

2
3/2

≡ lim
r→0



r
LS(r)

(δu)
2
3/2



 . (2.15)

For decaying turbulence, and considering the expression of the large-scale term LS ∝
u′

L (δu)2, together with

lim
r→0

(δu)
2
1/2

r
=

uK

η
≡ u′

λ
, (2.16)

term D becomes

Ddecay =
u′

L

/u′

λ
∝ λ

L
∝ 1

Rλ
. (2.17)

Here, uK = (νǫ)1/4 and η = (ν3/ǫ)1/4 are the Kolmogorov scales. This demonstration a

priori circumvents the explicit dependence of the constant C on the decaying exponent
n (Eq. (2.7)), which actually depends on Rλ for FRN.

Note here that a similar development holds for the case when several large-scale effects
coexist, such as production (due to mean velocity gradients, or coherent motion strain),
turbulent diffusion, decay etc. This can be the case of non-equilibrium flows. In these
cases also, the final result is that the sum of all large-scale effects behaves as ∝ 1

Rλ
for

sufficiently high Reynolds numbers.

For forced turbulence, two cases will be considered.

First, an experimental box turbulence produced by pairs of opposed streams that point
towards the central area of the flow. Shear turbulence, characterized by ∂Ui

∂xj
with i 6= j

is at this point excluded, because it is characterized by small-scale anisotropy, which is
not compatible with the locally isotropic context of this derivation. Therefore, the box
turbulence will be characterized by mean velocity gradients along the directions of the
mean streams themselves, e.g. ∂U

∂x ∝ u′

L , where L is the scale over which the mean stream
is stopped, or the scale at which the kinetic energy is injected. The large-scale term
becomes

LSforced(r) ∼ (δu)
2 dU

dx
, (2.18)

and with a similar development as above, term Dforced also scales as 1/Rλ.

Second, we consider numerically simulated forced box turbulence or SFPBT, for which
the energy injection is ensured at a given scale Lf , or a wavenumber kf ∼ 1/Lf . Then,
energy E(kf ) is continuously provided at the wavenumber kf . Term LSforced(r) is pro-
portional to the energy at that scale times velocity gradients at that scale, so it can be
written as the energy at the scale r times the strain felt by that scale because of the
energy injected at scale Lf . Since the characteristic strain felt at any wavenumer k is
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given by (Danaila & Antonia 2009)

τ(k) ∼
[

∫ k

0

k2E(k)dk

]

−1/2

, (2.19)

the strain at the scale r becomes s(k) ∝
[

E(kf ) ∗ k3f
]1/2

, or, in real space

s(r) ∝
[

(δu)
2
(Lf )

L2
f

]1/2

=
(δu)

2
1/2

(Lf )

Lf
, (2.20)

which is a constant in r, as it is directly given by the large-scale injection. The last step

is to write LSforcing ∼ (δu)2 · s(r) and it is straightforward to show that

Dforcing =
λ

u′
· s(r) ≡ λ

u′
· (δu)

2
1/2

(Lf )

Lf
. (2.21)

It is very reasonable to consider that the energy injected will be proportional to the

typical fluctuation u′, so u′ ∼
[

(δu)
2
(Lf )

]1/2

. Then,

Dforcing =
λ

Lf
∝ 1

Rλ
. (2.22)

Therefore, for forced box turbulence, the constant C is not zero, as suggested by some
data at small and moderate Reynolds numbers in Fig. 5, but is likely to be much smaller
than the values of C for either decaying turbulence, or when turbulence is forced over a
range of scales. For example, the estimated ratio of the large scale forcing term to S for
the SFPBT of Fukayama et al. (2000) is about 1.6% at Rλ = 70 (estimated from their
Fig. 5), while it is several orders of magnitude smaller than S at Rλ = 460 for the SFPBT
of Gotoh et al. (2002). In this case, one expects S+2G/Rλ to be very nearly zero.

3. G/Rλ

The considerations of section 2 point to S + 2G/Rλ approaching zero at sufficiently
large Rλ although the approach will differ in each flow. This is summarized in Fig. 1.
At any finite Rλ, grid turbulence is furthest from stationarity. One expects the SFPBT
data to lie close to the x axis. Given the uncertainties (e.g. noise contamination and/or
inadequate spatial resolution in hot-wire measurements) in estimating S and G, it is
unlikely that for Rλ>300, one will be able to distinguish unambiguously how S+2G/Rλ

departs from zero between different flows.
The term G, defined by (2.5), can be rewritten

G =
u∗2(∂2u∗/∂x∗2)2

(∂u∗/∂x∗)
2
2 (3.1)

where the asterisk denotes normalization by the Kolmogorov scales. If local isotropy

holds, so that ǫ = ǫiso = 15ν(∂u/∂x)
2
, (3.1) can be rewritten as

2G

Rλ
= 2× 153/2

∫

∞

0

k∗1
4φ∗

u(k
∗

1)dk
∗

1 , (3.2)

where φ∗

u(k
∗

1) is the one-dimensional spectral density of u, defined such that
∫

∞

0 φu(k1)dk1 =
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Figure 1. Dependence of S+2G/Rλ (Eq. (2.6)) on Rλ in different flows. (a) grid turbulence
(red), R=0.9, and n=1.1; (b) along the axis of a round jet (black), R=2/3; (c) ideal stationary
state (green); (d) Eddy-Damped Quasi-Normal Markovian (EDQNM) simulation of decaying
homogeneous isotropic turbulence (HIT) (light blue) (Meldi & Sagaut 2013).

u2. If there is a departure from local isotropy, then 2G/Rλ is estimated using

2G

Rλ
= 2ν

∫

∞

0
k1

4φu(k1)dk1

[
∫

∞

0
k1

2φu(k1)dk1]3/2
. (3.3)

Departure from local isotropy occurs when the large scale anisotropy is felt in the inertial
range. However, when this occurs, it does not affect the results discussed in this paper.
Indeed, the inertial range does not extend beyond k∗ ≃ 0.05 irrespective of the Rλ (e.g.
Ishihara et al. (2009), Yoffe (2012)). As it will be seen later (see for example Fig. 7),
the contribution to

∫

∞

0
k∗1

4φ∗

u(k
∗

1)dk
∗

1 from the wavenumber range 0 6 k∗ < 0.05, which
include the inertial range, is negligible in comparison to the contribution from the spectra
region above k∗ = 0.05. Thus, any large-scale anisotropy within the inertial range cannot
affect the calculation of G/Rλ.
There is ample evidence in the literature to indicate that the integrals in (3.2) or

(3.3) will rapidly converge to constant values with increasing Rλ. This behaviour follows
from the collapse of the dissipative part of φu(k1) when it is normalized with uK and
η, e.g. Saddoughi & Veeravalli (1994). This collapse does not require Rλ to be large
(Antonia et al. 2014), nor does it require local isotropy (LI) to be satisfied rigorously; it
does however break down when Rλ is small enough, typically smaller than 40. A value
as small as 20 was identified by Djenidi et al. (2014).

4. Results for S in a wide range of turbulent flows

Estimates of 2G/Rλ for the flows considered in Fig. 1 are shown in Fig. 2. Also included
are estimates inferred from measured spectra along the axis of a pipe by Rosenberg et al.

(2013) (the maximum value of Rλ for their measurements was 1362) also on the axis of
a plane far-wake (Champagne 1978). Since hot-wire measurements have good temporal
and spatial resolution for Rλ 6 30, the measured spectra were used to estimate 2G/Rλ

directly in this range of Reynolds numbers. For Rλ > 30, a uniform treatment was applied
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to the measured distributions of φ∗

u(k
∗

1) primarily to avoid the effects of noise contami-
nation and possible inadequate spatial resolution. The portion of the measured spectra
beyond k∗1≈0.3 was ignored and the distributions were extrapolated using a reference
spectrum. There is now cogent analytical arguments describe by Antonia et al. (2014),
supported by strong experimental and numerical evidence at low Reynolds numbers, for
extrapolating the dissipative range of the spectrum. Antonia et al. (2014) showed that
the collapse of the Kolmogorov-normalized spectrum in the dissipative range does on
hinge on local isotropy. Nor does it require the Reynolds number to be large. It is im-
portant to stress that the collapse is supported by experimental and numerical data at
low Reynolds numbers (for which spatial resolution is not an issue), hence justifying the
extrapolation as Rλ increases. The extrapolation avoids both the spatial resolution and
high frequency (measurement) noise issues as Rλ increases. Further, the arguments un-
derpinning the extrapolation become all the more justifiable since there is a decreasing
likelihood that the inhomogeneities in the large scales will affect the small scales when Rλ

increases. Thus, any sufficiently well resolved numerical or experimental spectrum can be
used for extrapolating the measured spectra whose dissipative range is not fully resolved.
Here we used the model spectrum of Pope (2000) mainly for convenience. The constants
were calibrated against well resolved DNS spectra (Abe et al. 2009a) on the centreline
of a channel flow, where the departure from LI is small and remained unchanged for all
the flows used in Fig. 2 (details of the procedure can be found in Tang et al. (2015b);
see also Lee et al. (2013)). It is important to stress that the model is mainly used as
a curve fit to the DNS data in the region k∗ > 0.3 to carry out the extrapolation of
the measured spectra. Further, the use of k∗−5/3 in the model has not biased the values
of G/Rλ that have been estimated from the extrapolated spectra, since, as commented
earlier, the contribution from this part of the spectrum is insignificant. As an example,
one set of extrapolated spectra for active grid turbulence (Larssen & Devenport 2011)
with Rλ in the range 100-1360 are shown in Fig 3. For Rλ > 30, 2G/Rλ was estimated
using the extrapolated spectra. The larger values of 2G/Rλ at small Rλ in Fig. 2 reflects,
to a large extent, the systematic departure of Kolmogorov normalized spectra of u, in
particular the systematic increase of the spectral density in the dissipation range (e.g.
Mansour & Wray 1994; Djenidi et al. 2014).
For grid turbulence, and along the axis of a round jet, 2G/Rλ is constant (≈0.53±0.1)

for Rλ>70. For SFPBT, the constancy of 2G/Rλ (≈ 0.53) is achieved at small Rλ; how-
ever, it would now seem that, for this type of forced turbulence, 2G/Rλ starts to increase
slowly with Rλ, when the latter exceeds a value of about 300 (e.g. Ishihara et al. 2007;
Gauding 2014). The light blue curve, inferred from the EDQNM simulation (Meldi & Sagaut
2013), approaches the same constant value (≈0.53) as the other experimental data in Fig.
2 only for Rλ≈ 103. This slow approach, which can also be seen in Fig. 1, is different from
that exhibited by all the other data and may reflect differences in the initial conditions
between simulation and experiments.
In what follows, we consider data for −S obtained by various authors in a wide range

of flows. Separate plots are used (Figs. 4, 5, 6), with the same x and y scales. The
theoretical distribution of Qian (1994) is shown, as reference, on each plot. The value of
0.53 inferred from Fig. 2 is also shown in each plot. With the exception of the channel
and pipe flows, the flows in Fig. 4 are of the decaying type. The red and black curves
are estimated from S + 2G/Rλ = C/Rλ by assuming that 2G/Rλ=constant (≈ 0.53,
when Rλ>70). For the red curve (grid turbulence), C, estimated from Eq. (2.7), is equal
to 8.8 (n was 1.2 as in the experiment of Lee et al. (2013) and R = 0.9). For the black
curve (axis of axisymmetric jet), C, estimated from Eq. (2.10), is equal to 4.8 (R = 2/3,
(Thiesset et al. 2014)). Although there are relatively few data available in the literature
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Figure 2. Dependence of 2G/Rλ on Rλ in different flows. (a) grid turbulence: ⊲, unpublished
passive grid data of Zhou & Antonia (2000); ▽, Larssen & Devenport (2011), active grid; ×,
Lee et al. (2013), passive grid; (b) axis of pipe: △, Rosenberg et al. (2013); (c) axis of plane
far-wake, ✩, Champagne (1978); (c) SFPBT: ⋄, Jimenez et al. (1993); ©, Yeung & Zhou (1997);
(d) jet axis: ■, Lefeuvre et al. (2015); (e) light blue curve: EDQNM (Meldi & Sagaut 2013) for
HIT. The horizontal line indicates the value of 0.53.
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Figure 3. Measured and extrapolated spectra for the active grid turbulence, data of
Larssen & Devenport (2011) with Rλ in the range 100-1360. The extrapolated spectra are offset
by two orders of magnitude along both x and y axes.

in the range 102 <Rλ< 103, the trend with Rλ of these data provides reasonable support
for the curves. The smallest values of -S correspond to the centreline of the channel
and the axis of the pipe (Antonia & Pearson 2000). There seems little doubt that for
Rλ 6 200, where the FRN effect must be important, −S can vary significantly from
flow to flow. This variation is reflected in the variation of C, which in essence represents
the different physical processes at large scales that contribute to the one-point energy
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Figure 4. Dependence of measured values of -S on Rλ in different flows and from two separate
EDQNM simulation for decaying HIT. (a) centreline of a fully developed channel flow (❒) and
pipe (✩), Antonia & Pearson (2000). (b) along the axis of a round jet: •, Mi et al. (2013);
▽, Friehe et al. (1971); +, Kahalerras et al. (1998); △, (Burattini, private communication); ■,
Lefeuvre et al. (2015). (c) grid turbulence: ×, Lee et al. (2013); ⊲, Mydlarski & Warhaft (1996);
❒, unpublished data of Zhou & Antonia (2000). (d) along the axis of a plane jet, ●, Zhou et al.
(2005); along the axis of the ONERA wind tunnel, ●, measurements of Kahalerras et al. (1998);
see Bos et al. (2012); blue curve, Qian (1994); pink and red dashed curves correspond to EDQNM
of Meldi & Sagaut (2013) and Bos et al. (2012) respectively. Red and black curves, inferred from
Eq. (2.6) by assuming 2G/Rλ=constant (≈ 0.53 for Rλ>70), correspond to grid turbulence, and
the axis of a round jet, respectively. The horizontal line indicates the value of 0.53.

10
1

10
2

10
3

0.2

 

 

0.5

 

 

 

 
1

Rλ

−
S

Figure 5. Dependence of -S on Rλ for SFPBT. ⋄, Jimenez et al. (1993); ×, Kerr (1985);
⊳, Gotoh et al. (2002); ✩, Yeung & Zhou (1997); ©, Gauding (2014) (k∗

max=2.53∼4.99); ∗
(k∗

max=1) and ∗ (k∗

max=2) correspond to Ishihara et al. (2007); blue curve, Qian (1994).
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Figure 6. Dependence of -S on Rλ in flow between counter-rotating disks. •, Tabeling et al.
(1996); ×, Belin et al. (1997); blue curve, Qian (1994); the horizontal line indicates the value of
0.53.

budget in different flows. For example, one expects the large scale contribution to the
one-point energy budget in the channel and pipe by turbulent diffusion (Tang et al.

2015b). It is also evident that for a given flow, −S may depend on the initial conditions
(e.g. Lavoie et al. 2007; Lee et al. 2013); we also note that, for the HIT simulations of
Antonia & Orlandi (2004); Burattini et al. (2008), −S is 0.5 for 50 < Rλ < 60 whereas
most of the measured values are somewhat smaller at such Reynolds numbers. Despite the
scatter, the data for -S on the jet axis (Mi et al. 2013; Friehe et al. 1971; Kahalerras et al.
1998) are in satisfactory agreement with the black curve. The major difficulty here is the
high turbulence intensity level on the jet axis and its effect on Taylor’s hypothesis (TH).
We suspect that the large values of -S (=0.68 and 0.80) reported by Champagne et al.

(1977) (they are not included in Fig. (4)) were adversely affected by the corrections that
were applied to TH. The two EDQNM distributions in Fig. 4 approach different values at
large Rλ, possibly reflecting differences in the initial conditions. We recall once again that
self-preserving HIT (n = 1) at all scales is possible only when Rλ is constant, regardless
of its value (see Meldi & Sagaut (2013); Djenidi & Antonia (2015)). In this case, S can
only be constant, in conformity with K41 (see the discussion in section 2).
Only SFPBT data are shown in Fig. 5; -S is virtually constant for Rλ> 20 − 40.

This is in quite good accord with the analytical prediction (-S=0.515 for Rλ> 40) of
Qian (1994, 2003). DNS data of Gotoh et al. (2002) indicated that for 38 6 Rλ 6 284,
-S is approximately constant (≃ 0.53). For Rλ=381 and 460, −S was 0.574 and 0.545
respectively, suggesting a possible small increase in −S with increasing Rλ. This has
since been confirmed by the DNS data of Ishihara et al. (2007) which suggest an increase
of -S according to (1.2) with α= 0.11. Since this turbulence should be stationary, the
increase reflects an increase of 2G/Rλ with Rλ; this issue will be discussed later in the
context of Fig. 7.
Various statistics for ∂u/∂x were presented by Tabeling et al. (1996) and Belin et al.

(1997) for a flow of helium gas at low temperature between two counter-rotating disks
over an impressively large range of Rλ: 150 to 5040 (Tabeling et al. 1996) and 150 to 2300
(Belin et al. 1997). In the context of this paper, these results are useful for two reasons.
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Firstly, S has been collected in the same flow. Secondly, since the flow is of the forced
type, the range of Rλ should be large enough to allow an exploration of α beyond the
range of Rλ that is associated with FRN effects. Moisy et al. (1999) showed that for this

flow, (δu∗)
3
/r∗ displays a reasonable plateau, with a magnitude of about 0.77, which is

quite close to Kolmogorov’s 4/5 law, when Rλ exceeds 1000. Antonia & Burattini (2006)
showed that for this type of flow, Rλ ≃ 1000 should be sufficient for FRN effects to cease
being important. The data of Tabeling et al. (1996) were not included in Sreenivasan &
Antonia’s compilations (Sreenivasan & Antonia 1997) for S and F , the flatness factor of
∂u/∂x, mainly because of a (slow) drop off in S & F beyond Rλ ≃ 700 − 800, which
was reported to coincide with a transition to a new state of turbulence. This behaviour
was reproduced in the later experiment by Belin et al. (1997) and the values of S and F
seemed unaffected at least up to Rλ ≃ 1000. Both sets of data for S are shown in Fig.
6, up to Rλ ≃ 2000. The transitional behaviour is difficult to discern in −S but can be
more easily seen in F and higher order moments of ∂u/∂x (which are not shown here).
It is clear however, that, allowing for the scatter, the Belin et al. (1997) data suggest, as
the authors indicate, that −S remains constant (≃ 0.50) over the whole range of Rλ, up
to Rλ ≃ 2000. This is consistent with our expected behaviour (section 2) of −S when
forcing is applied.

The high wavenumber part of k∗4E∗(k∗) (see blue curves in Fig. 7), where E(k) is
the 3D energy spectrum, increases systematically with Rλ implying nonconformity with
Kolmogorov scaling. This contrasts with the arguments put forward in Antonia et al.

(2014), the behaviour of spectra from lower Rλ DNSs of SFPBT as well as that for
experimental data in a wide range of flows at comparable if not larger Rλ than for
Ishihara et al. (2007). Figure 7 also shows the distributions of k∗4E∗(k∗) of Gotoh et al.

(2002) (Rλ=38 ∼ 460), Jimenez et al. (1993) (Rλ=35 ∼ 168) and Yeung & Zhou (1997)
(Rλ=38 ∼ 240) for SFPBT. Whilst the spectra of Gotoh et al. (2002), Jimenez et al.

(1993), and Yeung & Zhou (1997) collapse at high wavenumbers over the range 38 6Rλ6

460, those of Ishihara et al. (2007) exhibit a systematic increase with Rλ (a similar trend
has been observed by Gauding (2014), private communication); this is consistent with
the increase of −S with Rλ in Fig. 5. It is not clear why the spectra of Ishihara et al.

(2007) do not conform with Kolmogorov scaling, in particular with the 1st similarity law.
Nevertheless, Ishihara et al. (2005, 2007, 2009) leave open the possibility, based on fitting
to k∗4E∗(k∗) for k∗ > 0.5, that as Rλ → ∞, −S ”approaches a constant independent of
Rλ but the approach may be slow”.

Contrary to Fig. 7, the distributions of k∗41 φ∗

1(k
∗

1) in Fig. 8, where the maximum Rλ

is larger than in Fig. 7, do not exhibit any obvious dependence on Rλ. Notwithstanding
the scatter and the peeling off at decreasing values of k∗1 with increasing Rλ of some of
the data, the distributions cluster together in accord with Kolmogorov scaling and the
constancy of G/Rλ in Fig. 2.

We conclude this section by examining the dependence on Rλ of Sδu, the skewness of

δu, viz. Sδu = (δu)
3
/(δu)

2
3/2

, for most of the flows used in Fig. 4. Figure 9 highlights
the relatively strong variation with Rλ of both the shape and magnitude of Sδu at least
up to Rλ ≃ 1000. Whilst the variation with Rλ is systematic for a given flow, e.g. the
centreline of the channel (solid red curves) or grid turbulence (broken blue curves), the
magnitude of Sδu is larger for grid turbulence than the channel flow despite Rλ being
smaller in grid turbulence. This behaviour is of course consistent with Fig. 4. For all the
data in Fig. 9, the resolution of the single hot wire, as measured by the ratio lw/η (lw is
the length of the wire) is adequate since lw/η remains in the range 0.5-3. For Rλ > 500
(the plane & circular jet data as well as the Modane data at Rλ=2500), the distributions
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Figure 7. Normalized three-dimensional DNS spectra k∗4E∗(k∗) for SFPBT. Blue curves,
(Ishihara et al. 2007), Rλ=94, 173, 268, 429, and 675 respectively; the arrow indicates the
direction Rλ increases. Black curves, (Gotoh et al. 2002), Rλ=38, 54, 70, 125, 284, 381, and
460 respectively. Red curves, (Jimenez et al. 1993), Rλ=35, 61, 94, and 168 respectively. Green
curves, (Yeung & Zhou 1997), Rλ=38, 90, 140, 180, and 240 respectively.
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Figure 8. Normalized one-dimensional spectra k∗4
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1). Red curves, Antonia et al. (2014),
Rλ=41-140; blue curves, Rosenberg et al. (2013), Rλ=109-788; ×, Larssen & Devenport (2011),
Rλ=100-1360; black curve, DNS data of Gotoh et al. (2002), Rλ=460; green curves, DNS data
on the centreline of a channel flow (Abe et al. 2009b), Rλ=34-66.

of Sδu seem to collapse reasonably well at small r∗, up to r∗ ≃ 200. The rate at which Sδu

decreases as r∗ increases slows down for r∗ > 20 but there is no clear indication that Sδu

becomes constant, even for Rλ=25000. K41 requires the constant value, (−Sδu)IR say, to

be equal to 4/5C
−3/2
K where CK is the Kolmogorov constant, i.e. (δu)

2
= CK(εr)2/3. The

EDQNM result of Bos et al. (2012) appears to approach a plateau in the inertial range;
their data suggest that CK ≃ 2.2 so that (−Sδu)IR = 0.25. Despite the very large Rλ, the
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Figure 9. Skewness structure functions in different flows. (a) Red curves, centreline of a fully
developed channel flow, Antonia & Pearson (2000), Rλ=33-120 (lw/η=0.5-3.0). (b) Blue dashed
curves, grid turbulence, Zhou & Antonia (2000), Rλ=26-99, (lw/η=0.6-2.5). (c) Black curves,
plane jet axis, Zhou et al. (2005), Rλ=660-1067 (lw/η=1.4-2.3). (d) Blue solid curve, axis of
a round jet, Kahalerras et al. (1998), Rλ=835 (lw/η = 2.5). (e) Green curve, axis of the ON-
ERA wind tunnel, measurements of Kahalerras et al. (1998); see Bos et al. (2012) Rλ=2500
(lw/η = 1.14). Red dashed curve, EDQNM, Bos et al. (2012), Rλ=25000. Note that for all
experimental data, lw/η 6 3.0.

plateau for (δu)
2
/(ǫr)2/3 (the dashed red curve) is not yet reached (Fig. 3 of Bos et al.

(2012)), reinforcing Antonia & Burattini’s (2006) finding that, for decaying HIT, Rλ

should probably exceed 106 before the inertial range is established unequivocally.

5. Concluding discussion

Overall, Fig. 4 strongly supports the idea that in each flow -S approaches the same
constant value as Rλ increases but this approach differs from flow to flow. This vin-
dicates the suggestion by Thiesset et al. (2014) that previous attempts at testing the
Rλ dependence of properties of the SSM, which indiscriminately lumped together data
from all types of laboratory flows, are either not meaningful or, at the very least, should
be treated with caution. Further, even when the exponent is estimated from the same
flow, one needs to be sure that Rλ is sufficiently large for the FRN effect to have disap-
peared. This is unlikely to be an easy task in decaying-type flows in view of the results
in Antonia & Burattini (2006).
Since the flow dependent constant C is positive (although varying from flow to flow

and possibly from position to position in a given flow), -S should remain smaller than
its asymptotic constant (≈ 0.53) until C/Rλ becomes negligible. As predicated by Qian
(1994), -S cannot grow unboundedly as Rλ increases. This is contrary to the predictions
from lognormal and fractal models, (e.g. Van Atta & Antonia 1980; Frisch et al. 1978),
but is consistent with the vortex tube model of Tennekes (1968) and the heuristic model
of Saffman (1970).
Interestingly, the constancy of S which is equal to Sδu in the limit r∗ → 0, reflects

complete self-preservation, or self-preservation at all scales of motion when Rλ is very
high. In this case, Sδu should collapse onto a single curve, regardless of Rλ and exhibit
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3 plateaux, one at small r∗ (Sδu = S=const), one in the IR (Sδu = (Sδu)IR=const),
and one (Sδu=0) at large r∗ (> L∗). The constraint imposed by K41, viz. S=const, and
(Sδu)IR=const, is therefore subsumed within this more general framework. Although
Figs. 4, 6 and 9 support the constancy of S for laboratory flows, Fig. 9 is a reminder
that the constancy of (Sδu)IR may be out of reach in the laboratory, at least for decaying
turbulence. One expects the constancy of S and (Sδu)IR to be obtained in forced HIT
but, as illustrated in Figs. 5 and 7, this has yet to be confirmed by DNSs for forced
periodic box turbulence.
The constancy of -S at sufficiently large Rλ implied by Figs. 4 and 6, which contrasts

with (1.2), should not be too surprising given that the constraint of equation (2.6) is
based on the Navier-Stokes (N-S) equations. It is worth recalling, in the context of the
phenomenological model of Kolmogorov (1962), that, over the inertial range, (δu)3 is
constrained to vary proportionately to r, provided Rλ is sufficiently large. All small
scale intermittency models have had to satisfy this constraint. Future research may be
able to verify that normalised higher order moments of ∂u/∂x, e.g. the flatness factor

(F = (∂u/∂x)4/(∂u/∂x)2
2

) of ∂u/∂x, may like -S, be also bounded at sufficiently large
Rλ, once the appropriate constraint derived from the N-S equations is understood. Such
a possibility was considered by Qian (1986).

The financial support of the Australian Research Council (ARC) is acknowledged.
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